ADTypes.jl
Documentation for ADTypes.jl.
ADTypes.ADTypes
— ModuleADTypes.jl
ADTypes.jl is a multi-valued logic system to choose an automatic differentiation (AD) package and specify its parameters.
ADTypes.AbstractADType
— TypeAbstractADType
Abstract supertype for all AD choices.
Dense AD
Forward mode
Algorithmic differentiation:
ADTypes.AutoForwardDiff
— TypeAutoForwardDiff{chunksize,T}
Struct used to select the ForwardDiff.jl backend for automatic differentiation.
Defined by ADTypes.jl.
Constructors
AutoForwardDiff(; chunksize=nothing, tag=nothing)
Type parameters
chunksize
: the preferred chunk size to evaluate several derivatives at once
Fields
tag::T
: a custom tag to handle nested differentiation calls (usually not necessary)
ADTypes.AutoPolyesterForwardDiff
— TypeAutoPolyesterForwardDiff{chunksize,T}
Struct used to select the PolyesterForwardDiff.jl backend for automatic differentiation.
Defined by ADTypes.jl.
Constructors
AutoPolyesterForwardDiff(; chunksize=nothing, tag=nothing)
Type parameters
chunksize
: the preferred chunk size to evaluate several derivatives at once
Fields
tag::T
: a custom tag to handle nested differentiation calls (usually not necessary)
Finite differences:
ADTypes.AutoFiniteDiff
— TypeAutoFiniteDiff{T1,T2,T3}
Struct used to select the FiniteDiff.jl backend for automatic differentiation.
Defined by ADTypes.jl.
Constructors
AutoFiniteDiff(; fdtype=Val(:forward), fdjtype=fdtype, fdhtype=Val(:hcentral), relstep=nothing, absstep=nothing)
Fields
fdtype::T1
: finite difference typefdjtype::T2
: finite difference type for the Jacobianfdhtype::T3
: finite difference type for the Hessianrelstep
: relative finite difference step sizeabsstep
: absolute finite difference step size
ADTypes.AutoFiniteDifferences
— TypeAutoFiniteDifferences{T}
Struct used to select the FiniteDifferences.jl backend for automatic differentiation.
Defined by ADTypes.jl.
Constructors
AutoFiniteDifferences(; fdm)
Fields
fdm::T
: aFiniteDifferenceMethod
Taylor mode:
ADTypes.AutoGTPSA
— TypeAutoGTPSA{D}
Struct used to select the GTPSA.jl backend for automatic differentiation.
Defined by ADTypes.jl.
Constructors
AutoGTPSA(; descriptor=nothing)
Fields
descriptor::D
: can be either- a GTPSA
Descriptor
specifying the number of variables/parameters, parameter order, individual variable/parameter truncation orders, and maximum order. See the GTPSA.jl documentation for more details. nothing
to automatically use aDescriptor
given the context.
- a GTPSA
ADTypes.AutoTaylorDiff
— TypeAutoTaylorDiff{order}
Struct used to select the TaylorDiff.jl backend for automatic differentiation.
Defined by ADTypes.jl.
Constructors
AutoTaylorDiff(; order = 1)
Type parameters
order
: the order of the Taylor-mode automatic differentiation
Reverse mode
ADTypes.AutoMooncake
— TypeAutoMooncake
Struct used to select the Mooncake.jl backend for automatic differentiation.
Defined by ADTypes.jl.
Constructors
AutoMooncake(; config)
Fields
config
: eithernothing
or an instance ofMooncake.Config
– see the docstring ofMooncake.Config
for more information.AutoMooncake(; config=nothing)
is equivalent toAutoMooncake(; config=Mooncake.Config())
, i.e. the default configuration.
ADTypes.AutoReverseDiff
— TypeAutoReverseDiff{compile}
Struct used to select the ReverseDiff.jl backend for automatic differentiation.
Defined by ADTypes.jl.
Constructors
AutoReverseDiff(; compile::Union{Val, Bool} = Val(false))
Fields
compile::Union{Val, Bool}
: whether to allow pre-recording and reusing a tape (which speeds up the differentiation process).- If
compile=false
orcompile=Val(false)
, a new tape must be recorded at every call to the differentiation operator. - If
compile=true
orcompile=Val(true)
, a tape can be pre-recorded on an example input and then reused at every differentiation call.
The boolean version of this keyword argument is taken as the type parameter.
- If
Pre-recording a tape only captures the path taken by the differentiated function when executed on the example input. If said function has value-dependent branching behavior, reusing pre-recorded tapes can lead to incorrect results. In such situations, you should keep the default setting compile=Val(false)
. For more details, please refer to ReverseDiff's AbstractTape
API documentation.
Despite what its name may suggest, the compile
setting does not prescribe whether or not the tape is compiled with ReverseDiff.compile
after being recorded. This is left as a private implementation detail.
ADTypes.AutoTracker
— TypeAutoTracker
Struct used to select the Tracker.jl backend for automatic differentiation.
Defined by ADTypes.jl.
Constructors
AutoTracker()
ADTypes.AutoZygote
— TypeAutoZygote
Struct used to select the Zygote.jl backend for automatic differentiation.
Defined by ADTypes.jl.
Constructors
AutoZygote()
Forward or reverse mode
ADTypes.AutoEnzyme
— TypeAutoEnzyme{M,A}
Struct used to select the Enzyme.jl backend for automatic differentiation.
Defined by ADTypes.jl.
Constructors
AutoEnzyme(; mode::M=nothing, function_annotation::Type{A}=Nothing)
Type parameters
A
determines how the functionf
to differentiate is passed to Enzyme. It can be:- a subtype of
EnzymeCore.Annotation
(likeEnzymeCore.Const
orEnzymeCore.Duplicated
) to enforce a given annotation Nothing
to simply passf
and let Enzyme choose the most appropriate annotation
- a subtype of
Fields
mode::M
determines the autodiff mode (forward or reverse). It can be:- an object subtyping
EnzymeCore.Mode
(likeEnzymeCore.Forward
orEnzymeCore.Reverse
) if a specific mode is required nothing
to choose the best mode automatically
- an object subtyping
ADTypes.AutoChainRules
— TypeAutoChainRules{RC}
Struct used to select an automatic differentiation backend based on ChainRulesCore.jl (see the list here).
Defined by ADTypes.jl.
Constructors
AutoChainRules(; ruleconfig)
Fields
ruleconfig::RC
: aChainRulesCore.RuleConfig
object.
ADTypes.AutoDiffractor
— TypeAutoDiffractor
Struct used to select the Diffractor.jl backend for automatic differentiation.
Defined by ADTypes.jl.
Constructors
AutoDiffractor()
Symbolic mode
ADTypes.AutoFastDifferentiation
— TypeAutoFastDifferentiation
Struct used to select the FastDifferentiation.jl backend for automatic differentiation.
Defined by ADTypes.jl.
Constructors
AutoFastDifferentiation()
ADTypes.AutoSymbolics
— TypeAutoSymbolics
Struct used to select the Symbolics.jl backend for automatic differentiation.
Defined by ADTypes.jl.
Constructors
AutoSymbolics()
Sparse AD
ADTypes.AutoSparse
— TypeAutoSparse{D,S,C}
Wraps an ADTypes.jl object to deal with sparse Jacobians and Hessians.
Fields
dense_ad::D
: the underlying AD package, subtypingAbstractADType
sparsity_detector::S
: the sparsity pattern detector, subtypingAbstractSparsityDetector
coloring_algorithm::C
: the coloring algorithm, subtypingAbstractColoringAlgorithm
Constructors
AutoSparse(
dense_ad;
sparsity_detector=ADTypes.NoSparsityDetector(),
coloring_algorithm=ADTypes.NoColoringAlgorithm()
)
ADTypes.dense_ad
— Functiondense_ad(ad::AutoSparse)::AbstractADType
Return the underlying AD package for a sparse AD choice.
See also
Sparsity detector
ADTypes.sparsity_detector
— Functionsparsity_detector(ad::AutoSparse)::AbstractSparsityDetector
Return the sparsity pattern detector for a sparse AD choice.
See also
ADTypes.AbstractSparsityDetector
— TypeAbstractSparsityDetector
Abstract supertype for sparsity pattern detectors.
Required methods
ADTypes.jacobian_sparsity
— Functionjacobian_sparsity(f, x, sd::AbstractSparsityDetector)::AbstractMatrix{Bool}
jacobian_sparsity(f!, y, x, sd::AbstractSparsityDetector)::AbstractMatrix{Bool}
Use detector sd
to construct a (typically sparse) matrix S
describing the pattern of nonzeroes in the Jacobian of f
(resp. f!
) applied at x
(resp. (y, x)
).
ADTypes.hessian_sparsity
— Functionhessian_sparsity(f, x, sd::AbstractSparsityDetector)::AbstractMatrix{Bool}
Use detector sd
to construct a (typically sparse) matrix S
describing the pattern of nonzeroes in the Hessian of f
applied at x
.
ADTypes.NoSparsityDetector
— TypeNoSparsityDetector <: AbstractSparsityDetector
Trivial sparsity detector, which always returns a full sparsity pattern (only ones, no zeroes).
See also
ADTypes.KnownJacobianSparsityDetector
— TypeKnownJacobianSparsityDetector(jacobian_sparsity::AbstractMatrix) <: AbstractSparsityDetector
Trivial sparsity detector used to return a known Jacobian sparsity pattern.
See also
ADTypes.KnownHessianSparsityDetector
— TypeKnownHessianSparsityDetector(hessian_sparsity::AbstractMatrix) <: AbstractSparsityDetector
Trivial sparsity detector used to return a known Hessian sparsity pattern.
See also
Coloring algorithm
ADTypes.coloring_algorithm
— Functioncoloring_algorithm(ad::AutoSparse)::AbstractColoringAlgorithm
Return the coloring algorithm for a sparse AD choice.
See also
ADTypes.AbstractColoringAlgorithm
— TypeAbstractColoringAlgorithm
Abstract supertype for Jacobian/Hessian coloring algorithms.
Required methods
Note
The terminology and definitions are taken from the following paper:
What Color Is Your Jacobian? Graph Coloring for Computing Derivatives, Assefaw Hadish Gebremedhin, Fredrik Manne, and Alex Pothen (2005)
ADTypes.column_coloring
— Functioncolumn_coloring(M::AbstractMatrix, ca::ColoringAlgorithm)::AbstractVector{<:Integer}
Use algorithm ca
to construct a structurally orthogonal partition of the columns of M
.
The result is a coloring vector c
of length size(M, 2)
such that for every non-zero coefficient M[i, j]
, column j
is the only column of its color c[j]
with a non-zero coefficient in row i
.
ADTypes.row_coloring
— Functionrow_coloring(M::AbstractMatrix, ca::ColoringAlgorithm)::AbstractVector{<:Integer}
Use algorithm ca
to construct a structurally orthogonal partition of the rows of M
.
The result is a coloring vector c
of length size(M, 1)
such that for every non-zero coefficient M[i, j]
, row i
is the only row of its color c[i]
with a non-zero coefficient in column j
.
ADTypes.symmetric_coloring
— Functionsymmetric_coloring(M::AbstractMatrix, ca::ColoringAlgorithm)::AbstractVector{<:Integer}
Use algorithm ca
to construct a symmetrically structurally orthogonal partition of the columns (or rows) of the symmetric matrix M
.
The result is a coloring vector c
of length size(M, 1) == size(M, 2)
such that for every non-zero coefficient M[i, j]
, at least one of the following conditions holds:
- column
j
is the only column of its colorc[j]
with a non-zero coefficient in rowi
; - column
i
is the only column of its colorc[i]
with a non-zero coefficient in rowj
.
ADTypes.NoColoringAlgorithm
— TypeNoColoringAlgorithm <: AbstractColoringAlgorithm
Trivial coloring algorithm, which always returns a different color for each matrix column/row.
See also
Modes
ADTypes.mode
— Functionmode(ad::AbstractADType)
Return the differentiation mode of ad
, as a subtype of AbstractMode
.
ADTypes.AbstractMode
— TypeAbstractMode
Abstract supertype for the traits identifying differentiation modes.
Subtypes
ADTypes.ForwardMode
— TypeForwardMode
Trait for AD choices that rely on forward mode algorithmic differentiation or finite differences.
These two paradigms are classified together because they can both efficiently compute Jacobian-vector products.
ADTypes.ForwardOrReverseMode
— TypeForwardOrReverseMode
Trait for AD choices that can work either in ForwardMode
or ReverseMode
, depending on their configuration.
This trait should rarely be used, because more precise dispatches to ForwardMode
or ReverseMode
should be defined.
ADTypes.ReverseMode
— TypeReverseMode
Trait for AD choices that rely on reverse mode algorithmic differentiation.
ADTypes.SymbolicMode
— TypeSymbolicMode
Trait for AD choices that rely on symbolic differentiation.
Miscellaneous
ADTypes.Auto
— FunctionADTypes.Auto(package::Symbol)
A shortcut that converts an AD package name into an instance of AbstractADType
, with all parameters set to their default values.
This function is type-unstable by design and might lead to suboptimal performance. In most cases, you should never need it: use the individual backend types directly.
Example
import ADTypes
backend = ADTypes.Auto(:Zygote)
# output
ADTypes.AutoZygote()
Deprecated
ADTypes.AutoTapir
— TypeAutoTapir
AutoTapir
is deprecated following a package renaming, please use AutoMooncake
instead.
Struct used to select the Tapir.jl backend for automatic differentiation.
Defined by ADTypes.jl.
Constructors
AutoTapir(; safe_mode=true)
Fields
safe_mode::Bool
: whether to run additional checks to catch errors early.