BoundaryValueDiffEqMIRKN
Monotonic Implicit Runge Kutta Nyström(MIRKN) Methods. To only use the MIRKN methods form BoundaryValueDiffEq.jl, you need to install them use the Julia package manager:
using Pkg
Pkg.add("BoundaryValueDiffEqMIRKN")solve(prob::SecondOrderBVProblem, alg, dt; kwargs...)
solve(prob::TwoPointSecondOrderBVProblem, alg, dt; kwargs...)Full List of Methods
MIRKN4: 4 stage Monotonic Implicit Runge-Kutta-Nyström method, with no error control adaptivity.MIRKN6: 4 stage Monotonic Implicit Runge-Kutta-Nyström method, with no error control adaptivity.
Detailed Solvers Explanation
BoundaryValueDiffEqMIRKN.MIRKN4 — Type
MIRKN4(; nlsolve = NewtonRaphson(), optimize = nothing, jac_alg = BVPJacobianAlgorithm(),
defect_threshold = 0.1, max_num_subintervals = 3000)4th order Monotonic Implicit Runge Kutta Nyström method.
Keyword Arguments
nlsolve: Internal Nonlinear solver. Any solver which conforms to the SciMLNonlinearProbleminterface can be used. Note that any autodiff argument for the solver will be ignored and a custom jacobian algorithm will be used.optimize: Internal Optimization solver. Any solver which conforms to the SciMLOptimizationProbleminterface can be used. Note that any autodiff argument for the solver will be ignored and a custom jacobian algorithm will be used. Optimization solvers should first be loaded to allow this functionality.jac_alg: Jacobian Algorithm used for the nonlinear solver. Defaults toBVPJacobianAlgorithm(), which automatically decides the best algorithm to use based on the input types and problem type.- For
TwoPointBVProblem, onlydiffmodeis used (defaults toAutoSparse(AutoForwardDiff())if possible elseAutoSparse(AutoFiniteDiff())). - For
BVProblem,bc_diffmodeandnonbc_diffmodeare used. Fornonbc_diffmodedefaults toAutoSparse(AutoForwardDiff())if possible elseAutoSparse(AutoFiniteDiff()). Forbc_diffmode, defaults toAutoForwardDiffif possible elseAutoFiniteDiff.
- For
defect_threshold: Threshold for defect control.max_num_subintervals: Number of maximal subintervals, default as 3000.
For type-stability, the chunksizes for ForwardDiff ADTypes in BVPJacobianAlgorithm must be provided.
References
@article{Muir2001MonoImplicitRM,
title={Mono-Implicit Runge-Kutta-Nystr{"o}m Methods with Application to Boundary Value Ordinary Differential Equations},
author={Paul H. Muir and Mark F. Adams},
journal={BIT Numerical Mathematics},
year={2001},
volume={41},
pages={776-799}
}BoundaryValueDiffEqMIRKN.MIRKN6 — Type
MIRKN6(; nlsolve = NewtonRaphson(), optimize = nothing, jac_alg = BVPJacobianAlgorithm(),
defect_threshold = 0.1, max_num_subintervals = 3000)6th order Monotonic Implicit Runge Kutta Nyström method.
Keyword Arguments
nlsolve: Internal Nonlinear solver. Any solver which conforms to the SciMLNonlinearProbleminterface can be used. Note that any autodiff argument for the solver will be ignored and a custom jacobian algorithm will be used.optimize: Internal Optimization solver. Any solver which conforms to the SciMLOptimizationProbleminterface can be used. Note that any autodiff argument for the solver will be ignored and a custom jacobian algorithm will be used. Optimization solvers should first be loaded to allow this functionality.jac_alg: Jacobian Algorithm used for the nonlinear solver. Defaults toBVPJacobianAlgorithm(), which automatically decides the best algorithm to use based on the input types and problem type.- For
TwoPointBVProblem, onlydiffmodeis used (defaults toAutoSparse(AutoForwardDiff())if possible elseAutoSparse(AutoFiniteDiff())). - For
BVProblem,bc_diffmodeandnonbc_diffmodeare used. Fornonbc_diffmodedefaults toAutoSparse(AutoForwardDiff())if possible elseAutoSparse(AutoFiniteDiff()). Forbc_diffmode, defaults toAutoForwardDiffif possible elseAutoFiniteDiff.
- For
defect_threshold: Threshold for defect control.max_num_subintervals: Number of maximal subintervals, default as 3000.
For type-stability, the chunksizes for ForwardDiff ADTypes in BVPJacobianAlgorithm must be provided.
References
@article{Muir2001MonoImplicitRM,
title={Mono-Implicit Runge-Kutta-Nystr{"o}m Methods with Application to Boundary Value Ordinary Differential Equations},
author={Paul H. Muir and Mark F. Adams},
journal={BIT Numerical Mathematics},
year={2001},
volume={41},
pages={776-799}
}