ODE Tableaus
Explicit Runge-Kutta Methods
constructEuler- Euler's 1st order method.constructHeun()Heun's order 2 method.constructRalston()- Ralston's order 2 method.constructSSPRK22()- Explicit SSP method of order 2 using 2 stages.constructKutta3- Kutta's classic 3rd order method.constructSSPRK33()- Explicit SSP method of order 3 using 3 stages.constructSSPRK43()- Explicit SSP method of order 3 using 4 stages.constructRK4- The classic 4th order "Runge-Kutta" method.constructRK438Rule- The classic 4th order "3/8th's Rule" method.constructSSPRK104()- Explicit SSP method of order 4 using 10 stages.constructBogakiShampine3()- Bogakai-Shampine's 2/3 method.constructRKF4()- Runge-Kutta-Fehlberg 3/4.constructRKF5()- Runge-Kutta-Fehlberg 4/5.constructRungeFirst5()- Runge's first 5th order method.constructCassity5()- Cassity's 5th order method.constructLawson5()- Lawson's 5th order method.constructLutherKonen5- Luther-Konen's first 5th order method.constructLutherKonen52()- Luther-Konen's second 5th order method.constructLutherKonen53()- Luther-Konen's third 5th order method.constructPapakostasPapaGeorgiou5()- Papakostas and PapaGeorgiou more stable order 5 method.constructPapakostasPapaGeorgiou52()- Papakostas and PapaGeorgiou more efficient order 5 method.constructTsitouras5()- Tsitouras's order 5 method.constructBogakiShampine5()- Bogaki and Shampine's Order 5 method.constructSharpSmart5()- Sharp and Smart's Order 5 method.constructCashKarp()- Cash-Karp method 4/5.constructDormandPrince()- Dormand-Prince 4/5.constructButcher6()- Butcher's first order 6 method.constructButcher62()- Butcher's second order 6 method.constructButcher63()- Butcher's third order 6 method.constructDormandPrince6()- Dormand-Prince's 5/6 method.constructSharpVerner6()Sharp-Verner's 5/6 method.constructVerner916()- Verner's more efficient order 6 method (1991).constructVerner9162()- Verner's second more efficient order 6 method (1991).constructVernerRobust6()- Verner's "most robust" order 6 method.constructVernerEfficient6()- Verner's "most efficient" order 6 method.constructPapakostas6()- Papakostas's order 6 method.constructLawson6()- Lawson's order 6 method.constructTsitourasPapakostas6()- Tsitouras and Papakostas's order 6 method.constructDormandLockyerMcCorriganPrince6()- the Dormand-Lockyer-McCorrigan-Prince order 6 method.constructTanakaKasugaYamashitaYazaki6A()- Tanaka-Kasuga-Yamashita-Yazaki order 6 method A.constructTanakaKasugaYamashitaYazaki6B()- Tanaka-Kasuga-Yamashita-Yazaki order 6 method B.constructTanakaKasugaYamashitaYazaki6C()- Tanaka-Kasuga-Yamashita-Yazaki order 6 method C.constructTanakaKasugaYamashitaYazaki6D()- Tanaka-Kasuga-Yamashita-Yazaki order 6 method D.constructMikkawyEisa()- Mikkawy and Eisa's order 6 method.constructChummund6()- Chummund's first order 6 method.constructChummund62()- Chummund's second order 6 method.constructHuta6()- Huta's first order 6 method.constructHuta62()- Huta's second order 6 method.constructVerner6()- An old order 6 method attributed to Verner.constructDverk()- The classic DVERK algorithm attributed to Verner.constructClassicVerner6()- A classic Verner order 6 algorithm (1978).constructButcher7()- Butcher's order 7 algorithm.constructClassicVerner7()- A classic Verner order 7 algorithm (1978).constructVernerRobust7()- Verner's "most robust" order 7 algorithm.constructTanakaYamashitaStable7()- Tanaka-Yamashita more stable order 7 algorithm.constructTanakaYamashitaEfficient7()- Tanaka-Yamashita more efficient order 7 algorithm.constructSharpSmart7()- Sharp-Smart's order 7 algorithm.constructSharpVerner7()- Sharp-Verner's order 7 algorithm.constructVerner7()- Verner's "most efficient" order 7 algorithm.constructVernerEfficient7()- Verner's "most efficient" order 7 algorithm.constructClassicVerner8()- A classic Verner order 8 algorithm (1978).constructCooperVerner8()- Cooper-Verner's first order 8 algorithm.constructCooperVerner82()- Cooper-Verner's second order 8 algorithm.constructTsitourasPapakostas8()- Tsitouras-Papakostas order 8 algorithm.constructdverk78()- The classic order 8 DVERK algorithm.constructEnrightVerner8()- Enright-Verner order 8 algorithm.constructCurtis8()- Curtis' order 8 algorithm.constructVerner8()- Verner's "most efficient" order 8 algorithm.constructRKF8()- Runge-Kutta-Fehlberg Order 7/8 method.constructDormandPrice8()- Dormand-Prince Order 7/8 method.constructDormandPrince8_64bit()- Dormand-Prince Order 7/8 method. Coefficients are rational approximations good for 64 bits.constructVernerRobust9()- Verner's "most robust" order 9 method.constructVernerEfficient9()- Verner's "most efficient" order 9 method.constructSharp9()- Sharp's order 9 method.constructTsitouras9()- Tsitouras's first order 9 method.constructTsitouras92()- Tsitouras's second order 9 method.constructCurtis10()- Curtis' order 10 method.constructOno10()- Ono's order 10 method.constructFeagin10Tableau()- Feagin's order 10 method.constructCurtis10()- Curtis' order 10 method.constructBaker10()- Baker's order 10 method.constructHairer10()Hairer's order 10 method.constructFeagin12Tableau()- Feagin's order 12 method.constructOno12()- Ono's order 12 method.constructFeagin14Tableau()Feagin's order 14 method.
Implicit Runge-Kutta Methods
constructImplicitEuler- The 1st order Implicit Euler method.constructMidpointRule- The 2nd order Midpoint method.constructTrapezoidalRule- The 2nd order Trapezoidal rule (2nd order LobattoIIIA)constructLobattoIIIA4- The 4th order LobattoIIIAconstructLobattoIIIB2- The 2nd order LobattoIIIBconstructLobattoIIIB4- The 4th order LobattoIIIBconstructLobattoIIIC2- The 2nd order LobattoIIICconstructLobattoIIIC4- The 4th order LobattoIIICconstructLobattoIIICStar2- The 2nd order LobattoIIIC*constructLobattoIIICStar4- The 4th order LobattoIIIC*constructLobattoIIID2- The 2nd order LobattoIIIDconstructLobattoIIID4- The 4th order LobattoIIIDconstructRadauIA3- The 3rd order RadauIAconstructRadauIA5- The 5th order RadauIAconstructRadauIIA3- The 3rd order RadauIIAconstructRadauIIA5- The 5th order RadauIIA
Tableau Methods
DiffEqDevTools.stability_region — Function
stability_region(z, tab::ODERKTableau; embedded = false)
Calculates the stability function from the tableau at z. Stable if <1. If embedded = true, the stability function is calculated for the embedded method. Otherwise, the stability function is calculated for the main method (default).
\[r(z) = 1 + z bᵀ(I - zA)⁻¹ e\]
where e denotes a vector of ones.
stability_region(z, alg::AbstractODEAlgorithm)Calculates the stability function from the algorithm alg at z. The stability region of a possible embedded method cannot be calculated using this method.
If you use an implicit method, you may run into convergence issues when the value of z is outside of the stability region, e.g.,
julia> typemin(Float64)
-Inf
julia> stability_region(typemin(Float64), ImplicitEuler())
┌ Warning: Newton steps could not converge and algorithm is not adaptive. Use a lower dt.
julia> nextfloat(typemin(Float64))
-1.7976931348623157e308
julia> stability_region(nextfloat(typemin(Float64)), ImplicitEuler())
0.0stability_region(tab_or_alg::Union{ODERKTableau, AbstractODEAlgorithm}; initial_guess=-3.0)
Calculates the length of the stability region in the real axis. See also imaginary_stability_interval.
Missing docstring for OrdinaryDiffEq.ODE_DEFAULT_TABLEAU. Check Documenter's build log for details.
Explicit Tableaus
DiffEqDevTools.constructEuler — Function
Euler's method.
DiffEqDevTools.constructRalston — Function
Ralston's Order 2 method.
DiffEqDevTools.constructHeun — Function
Heun's Order 2 method.
DiffEqDevTools.constructKutta3 — Function
Kutta's Order 3 method.
Missing docstring for OrdinaryDiffEq.constructBS3. Check Documenter's build log for details.
DiffEqDevTools.constructBogakiShampine3 — Function
constructBogakiShampine3()
Constructs the tableau object for the Bogakai-Shampine Order 2/3 method.
DiffEqDevTools.constructRK4 — Function
Classic RK4 method.
DiffEqDevTools.constructRK438Rule — Function
Classic RK4 3/8's rule method.
DiffEqDevTools.constructRKF4 — Function
Runge-Kutta-Fehberg Order 4/3
DiffEqDevTools.constructRKF5 — Function
Runge-Kutta-Fehlberg Order 4/5 method.
DiffEqDevTools.constructCashKarp — Function
constructCashKarp()
Constructs the tableau object for the Cash-Karp Order 4/5 method.
Missing docstring for DiffEqDevTools.constructDormandPrince. Check Documenter's build log for details.
Missing docstring for OrdinaryDiffEq.constructBS5. Check Documenter's build log for details.
DiffEqDevTools.constructPapakostasPapaGeorgiou5 — Function
S.N. Papakostas and G. PapaGeorgiou higher error more stable
A Family of Fifth-order Runge-Kutta Pairs, by S.N. Papakostas and G. PapaGeorgiou, Mathematics of Computation,Volume 65, Number 215, July 1996, Pages 1165-1181.
DiffEqDevTools.constructPapakostasPapaGeorgiou52 — Function
S.N. Papakostas and G. PapaGeorgiou less stable lower error Strictly better than DP5
A Family of Fifth-order Runge-Kutta Pairs, by S.N. Papakostas and G. PapaGeorgiou, Mathematics of Computation,Volume 65, Number 215, July 1996, Pages 1165-1181.
DiffEqDevTools.constructTsitouras5 — Function
Runge–Kutta pairs of orders 5(4) using the minimal set of simplifying assumptions, by Ch. Tsitouras, TEI of Chalkis, Dept. of Applied Sciences, GR34400, Psahna, Greece.
DiffEqDevTools.constructLutherKonen5 — Function
Luther and Konen's First Order 5 Some Fifth-Order Classical Runge Kutta Formulas, H.A.Luther and H.P.Konen, Siam Review, Vol. 3, No. 7, (Oct., 1965) pages 551-558.
DiffEqDevTools.constructLutherKonen52 — Function
Luther and Konen's Second Order 5 Some Fifth-Order Classical Runge Kutta Formulas, H.A.Luther and H.P.Konen, Siam Review, Vol. 3, No. 7, (Oct., 1965) pages 551-558.
DiffEqDevTools.constructLutherKonen53 — Function
Luther and Konen's Third Order 5 Some Fifth-Order Classical Runge Kutta Formulas, H.A.Luther and H.P.Konen, Siam Review, Vol. 3, No. 7, (Oct., 1965) pages 551-558.
DiffEqDevTools.constructRungeFirst5 — Function
Runge's First Order 5 method
DiffEqDevTools.constructLawson5 — Function
Lawson's 5th order scheme
An Order Five Runge Kutta Process with Extended Region of Stability, J. Douglas Lawson, Siam Journal on Numerical Analysis, Vol. 3, No. 4, (Dec., 1966) pages 593-597
DiffEqDevTools.constructSharpSmart5 — Function
Explicit Runge-Kutta Pairs with One More Derivative Evaluation than the Minimum, by P.W.Sharp and E.Smart, Siam Journal of Scientific Computing, Vol. 14, No. 2, pages. 338-348, March 1993.
DiffEqDevTools.constructBogakiShampine5 — Function
An Efficient Runge-Kutta (4,5) Pair by P.Bogacki and L.F.Shampine Computers and Mathematics with Applications, Vol. 32, No. 6, 1996, pages 15 to 28
DiffEqDevTools.constructCassity5 — Function
Cassity's Order 5 method
DiffEqDevTools.constructButcher6 — Function
Butcher's First Order 6 method
On Runge-Kutta Processes of High Order, by J. C. Butcher, Journal of the Australian Mathematical Society, Vol. 4, (1964), pages 179 to 194
DiffEqDevTools.constructButcher62 — Function
Butcher's Second Order 6 method
On Runge-Kutta Processes of High Order, by J. C. Butcher, Journal of the Australian Mathematical Society, Vol. 4, (1964), pages 179 to 194
DiffEqDevTools.constructButcher63 — Function
Butcher's Third Order 6
On Runge-Kutta Processes of High Order, by J. C. Butcher, Journal of the Australian Mathematical Society, Vol. 4, (1964), pages 179 to 194
DiffEqDevTools.constructVernerRobust6 — Function
From Verner's Website
DiffEqDevTools.constructTanakaKasugaYamashitaYazaki6A — Function
TanakaKasugaYamashitaYazaki Order 6 A
On the Optimization of Some Eight-stage Sixth-order Explicit Runge-Kutta Method, by M. Tanaka, K. Kasuga, S. Yamashita and H. Yazaki, Journal of the Information Processing Society of Japan, Vol. 34, No. 1 (1993), pages 62 to 74.
DiffEqDevTools.constructTanakaKasugaYamashitaYazaki6B — Function
constructTanakaKasugaYamashitaYazaki Order 6 B
On the Optimization of Some Eight-stage Sixth-order Explicit Runge-Kutta Method, by M. Tanaka, K. Kasuga, S. Yamashita and H. Yazaki, Journal of the Information Processing Society of Japan, Vol. 34, No. 1 (1993), pages 62 to 74.
DiffEqDevTools.constructTanakaKasugaYamashitaYazaki6C — Function
constructTanakaKasugaYamashitaYazaki Order 6 C
On the Optimization of Some Eight-stage Sixth-order Explicit Runge-Kutta Method, by M. Tanaka, K. Kasuga, S. Yamashita and H. Yazaki, Journal of the Information Processing Society of Japan, Vol. 34, No. 1 (1993), pages 62 to 74.
DiffEqDevTools.constructTanakaKasugaYamashitaYazaki6D — Function
constructTanakaKasugaYamashitaYazaki Order 6 D
On the Optimization of Some Eight-stage Sixth-order Explicit Runge-Kutta Method, by M. Tanaka, K. Kasuga, S. Yamashita and H. Yazaki, Journal of the Information Processing Society of Japan, Vol. 34, No. 1 (1993), pages 62 to 74.
DiffEqDevTools.constructHuta6 — Function
Anton Hutas First Order 6 method
Une amélioration de la méthode de Runge-Kutta-Nyström pour la résolution numérique des équations différentielles du premièr ordre, by Anton Huta, Acta Fac. Nat. Univ. Comenian Math., Vol. 1, pages 201-224 (1956).
DiffEqDevTools.constructHuta62 — Function
Anton Hutas Second Order 6 method
Une amélioration de la méthode de Runge-Kutta-Nyström pour la résolution numérique des équations différentielles du premièr ordre, by Anton Huta, Acta Fac. Nat. Univ. Comenian Math., Vol. 1, pages 201-224 (1956).
DiffEqDevTools.constructVerner6 — Function
Verner Order 5/6 method
A Contrast of a New RK56 pair with DP56, by Jim Verner, Department of Mathematics. Simon Fraser University, Burnaby, Canada, 2006.
DiffEqDevTools.constructDormandPrince6 — Function
Dormand-Prince Order 5//6 method
P.J. Prince and J. R. Dormand, High order embedded Runge-Kutta formulae, Journal of Computational and Applied Mathematics . 7 (1981), pp. 67-75.
DiffEqDevTools.constructSharpVerner6 — Function
Sharp-Verner Order 5/6 method
Completely Imbedded Runge-Kutta Pairs, by P. W. Sharp and J. H. Verner, SIAM Journal on Numerical Analysis, Vol. 31, No. 4. (Aug., 1994), pages. 1169 to 1190.
Missing docstring for DiffEqDevTools.constructVern6. Check Documenter's build log for details.
DiffEqDevTools.constructClassicVerner6 — Function
EXPLICIT RUNGE-KUTTA METHODS WITH ESTIMATES OF THE LOCAL TRUNCATION ERROR
DiffEqDevTools.constructChummund6 — Function
Chummund's First Order 6 method
A three-dimensional family of seven-step Runge-Kutta methods of order 6, by G. M. Chammud (Hammud), Numerical Methods and programming, 2001, Vol.2, 2001, pages 159-166 (Advanced Computing Scientific journal published by the Research Computing Center of the Lomonosov Moscow State Univeristy)
DiffEqDevTools.constructChummund62 — Function
Chummund's Second Order 6 method
A three-dimensional family of seven-step Runge-Kutta methods of order 6, by G. M. Chammud (Hammud), Numerical Methods and programming, 2001, Vol.2, 2001, pages 159-166 (Advanced Computing Scientific journal published by the Research Computing Center of the Lomonosov Moscow State Univeristy)
DiffEqDevTools.constructPapakostas6 — Function
Papakostas's Order 6
On Phase-Fitted modified Runge-Kutta Pairs of order 6(5), by Ch. Tsitouras and I. Th. Famelis, International Conference of Numerical Analysis and Applied Mathematics, Crete, (2006)
DiffEqDevTools.constructLawson6 — Function
Lawson's Order 6
An Order 6 Runge-Kutta Process with an Extended Region of Stability, by J. D. Lawson, Siam Journal on Numerical Analysis, Vol. 4, No. 4 (Dec. 1967) pages 620-625.
DiffEqDevTools.constructTsitourasPapakostas6 — Function
Tsitouras-Papakostas's Order 6
Cheap Error Estimation for Runge-Kutta methods, by Ch. Tsitouras and S.N. Papakostas, Siam Journal on Scientific Computing, Vol. 20, Issue 6, Nov 1999.
DiffEqDevTools.constructDormandLockyerMcCorriganPrince6 — Function
DormandLockyerMcCorriganPrince Order 6 Global Error Estimation
Global Error estimation with Runge-Kutta triples, by J.R.Dormand, M.A.Lockyer, N.E.McCorrigan and P.J.Prince, Computers and Mathematics with Applications, 18 (1989) pages 835-846.
DiffEqDevTools.constructVernerEfficient6 — Function
From Verner's Website
DiffEqDevTools.constructMikkawyEisa — Function
Mikkawy-Eisa Order 6
A general four-parameter non-FSAL embedded Runge–Kutta algorithm of orders 6 and 4 in seven stages, by M.E.A. El-Mikkawy and M.M.M. Eisa, Applied Mathematics and Computation, Vol. 143, No. 2, (2003) pages 259 to 267.
DiffEqDevTools.constructVernerEfficient7 — Function
From Verner's website
DiffEqDevTools.constructClassicVerner7 — Function
EXPLICIT RUNGE-KUTTA METHODS WITH ESTIMATES OF THE LOCAL TRUNCATION ERROR
DiffEqDevTools.constructSharpVerner7 — Function
Completely Imbedded Runge-Kutta Pairs, by P.W.Sharp and J.H.Verner, Siam Journal on Numerical Analysis, Vol.31, No.4. (August 1994) pages 1169-1190.
DiffEqDevTools.constructTanakaYamashitaStable7 — Function
On the Optimization of Some Nine-Stage Seventh-order Runge-Kutta Method, by M. Tanaka, S. Muramatsu and S. Yamashita, Information Processing Society of Japan, Vol. 33, No. 12 (1992) pages 1512-1526.
DiffEqDevTools.constructSharpSmart7 — Function
Explicit Runge-Kutta Pairs with One More Derivative Evaluation than the Minimum, by P.W.Sharp and E.Smart, Siam Journal of Scientific Computing, Vol. 14, No. 2, pages. 338-348, March 1993.
DiffEqDevTools.constructTanakaYamashitaEfficient7 — Function
On the Optimization of Some Nine-Stage Seventh-order Runge-Kutta Method, by M. Tanaka, S. Muramatsu and S. Yamashita, Information Processing Society of Japan, Vol. 33, No. 12 (1992) pages 1512-1526.
DiffEqDevTools.constructVernerRobust7 — Function
From Verner's website
Missing docstring for OrdinaryDiffEq.constructTanYam7. Check Documenter's build log for details.
DiffEqDevTools.constructEnrightVerner7 — Function
The Relative Efficiency of Alternative Defect Control Schemes for High-Order Continuous Runge-Kutta Formulas W. H. Enright SIAM Journal on Numerical Analysis, Vol. 30, No. 5. (Oct., 1993), pp. 1419-1445.
DiffEqDevTools.constructDormandPrince8 — Function
constructDormandPrice8()
Constructs the tableau object for the Dormand-Prince Order 6/8 method.
DiffEqDevTools.constructRKF8 — Function
constructRKF8()
Constructs the tableau object for the Runge-Kutta-Fehlberg Order 7/8 method.
DiffEqDevTools.constructCooperVerner8 — Function
Some Explicit Runge-Kutta Methods of High Order, by G. J. Cooper and J. H. Verner, SIAM Journal on Numerical Analysis, Vol. 9, No. 3, (September 1972), pages 389 to 405
DiffEqDevTools.constructCooperVerner82 — Function
Some Explicit Runge-Kutta Methods of High Order, by G. J. Cooper and J. H. Verner, SIAM Journal on Numerical Analysis, Vol. 9, No. 3, (September 1972), pages 389 to 405
DiffEqDevTools.constructTsitourasPapakostas8 — Function
Cheap Error Estimation for Runge-Kutta methods, by Ch. Tsitouras and S.N. Papakostas, Siam Journal on Scientific Computing, Vol. 20, Issue 6, Nov 1999.
DiffEqDevTools.constructEnrightVerner8 — Function
The Relative Efficiency of Alternative Defect Control Schemes for High-Order Continuous Runge-Kutta Formulas W. H. Enright SIAM Journal on Numerical Analysis, Vol. 30, No. 5. (Oct., 1993), pp. 1419-1445.
DiffEqDevTools.constructdverk78 — Function
Jim Verner's "Maple" (dverk78)
DiffEqDevTools.constructClassicVerner8 — Function
EXPLICIT RUNGE-KUTTA METHODS WITH ESTIMATES OF THE LOCAL TRUNCATION ERROR
DiffEqDevTools.constructDormandPrince8_64bit — Function
constructDormandPrice8_64bit()
Constructs the tableau object for the Dormand-Prince Order 6/8 method with the approximated coefficients from the paper. This works until below 64-bit precision.
DiffEqDevTools.constructCurtis8 — Function
An Eighth Order Runge-Kutta process with Eleven Function Evaluations per Step, by A. R. Curtis, Numerische Mathematik, Vol. 16, No. 3 (1970), pages 268 to 277
Missing docstring for OrdinaryDiffEq.constructTsitPap8. Check Documenter's build log for details.
DiffEqDevTools.constructSharp9 — Function
Journal of Applied Mathematics & Decision Sciences, 4(2), 183-192 (2000), "High order explicit Runge-Kutta pairs for ephemerides of the Solar System and the Moon".
DiffEqDevTools.constructTsitouras9 — Function
Optimized explicit Runge-Kutta pairs of order 9(8), by Ch. Tsitouras, Applied Numerical Mathematics, 38 (2001) 123-134.
DiffEqDevTools.constructTsitouras92 — Function
Optimized explicit Runge-Kutta pairs of order 9(8), by Ch. Tsitouras, Applied Numerical Mathematics, 38 (2001) 123-134.
DiffEqDevTools.constructVernerEfficient9 — Function
From Verner's Webiste
Missing docstring for OrdinaryDiffEq.constructVern9. Check Documenter's build log for details.
DiffEqDevTools.constructVerner916 — Function
Verner 1991 First Order 5/6 method
Some Ruge-Kutta Formula Pairs, by J.H.Verner, SIAM Journal on Numerical Analysis, Vol. 28, No. 2 (April 1991), pages 496 to 511.
DiffEqDevTools.constructVerner9162 — Function
Verner 1991 Second Order 5/6 method
Some Ruge-Kutta Formula Pairs, by J.H.Verner, SIAM Journal on Numerical Analysis, Vol. 28, No. 2 (April 1991), pages 496 to 511.
DiffEqDevTools.constructVernerRobust9 — Function
From Verner's Webiste
DiffEqDevTools.constructFeagin10 — Function
Feagin10 in Tableau form
Missing docstring for DiffEqDevTools.constructFeagin10Tableau. Check Documenter's build log for details.
DiffEqDevTools.constructOno10 — Function
Ono10
DiffEqDevTools.constructCurtis10 — Function
High-order Explicit Runge-Kutta Formulae, Their uses, and Limitations, A.R.Curtis, J. Inst. Maths Applics (1975) 16, 35-55.
DiffEqDevTools.constructHairer10 — Function
A Runge-Kutta Method of Order 10, E. Hairer, J. Inst. Maths Applics (1978) 21, 47-59.
DiffEqDevTools.constructBaker10 — Function
Tom Baker, University of Teeside. Part of RK-Aid http://www.scm.tees.ac.uk/users/u0000251/research/researcht.htm http://www.scm.tees.ac.uk/users/u0000251/j.r.dormand/t.baker/rk10921m/rk10921m
DiffEqDevTools.constructFeagin12 — Function
Tableau form of Feagin12
DiffEqDevTools.constructOno12 — Function
On the 25 stage 12th order explicit Runge-Kutta method, by Hiroshi Ono. Transactions of the Japan Society for Industrial and applied Mathematics, Vol. 6, No. 3, (2006) pages 177 to 186
Missing docstring for DiffEqDevTools.constructFeagin12Tableau. Check Documenter's build log for details.
DiffEqDevTools.constructFeagin14 — Function
Tableau form of Feagin14
Missing docstring for DiffEqDevTools.constructFeagin14Tableau. Check Documenter's build log for details.
Implicit Tableaus
DiffEqDevTools.constructImplicitEuler — Function
Implicit Euler Method
DiffEqDevTools.constructMidpointRule — Function
Order 2 Midpoint Method
DiffEqDevTools.constructTrapezoidalRule — Function
Order 2 Trapezoidal Rule (LobattoIIIA2)
DiffEqDevTools.constructLobattoIIIA4 — Function
LobattoIIIA Order 4 method
DiffEqDevTools.constructLobattoIIIB2 — Function
LobattoIIIB Order 2 method
DiffEqDevTools.constructLobattoIIIB4 — Function
LobattoIIIB Order 4 method
DiffEqDevTools.constructLobattoIIIC2 — Function
LobattoIIIC Order 2 method
DiffEqDevTools.constructLobattoIIIC4 — Function
LobattoIIIC Order 4 method
DiffEqDevTools.constructLobattoIIICStar2 — Function
LobattoIIIC* Order 2 method
DiffEqDevTools.constructLobattoIIICStar4 — Function
LobattoIIIC* Order 4 method
DiffEqDevTools.constructLobattoIIID2 — Function
LobattoIIID Order 2 method
DiffEqDevTools.constructLobattoIIID4 — Function
LobattoIIID Order 4 method
DiffEqDevTools.constructGL2 — Function
Gauss-Legendre Order 2.
DiffEqDevTools.constructGL4 — Function
Gauss-Legendre Order 4.
DiffEqDevTools.constructGL6 — Function
Gauss-Legendre Order 6.
DiffEqDevTools.constructRadauIA3 — Function
RadauIA Order 3 method
DiffEqDevTools.constructRadauIA5 — Function
RadauIA Order 5 method
DiffEqDevTools.constructRadauIIA3 — Function
RadauIIA Order 3 method
DiffEqDevTools.constructRadauIIA5 — Function
RadauIIA Order 5 method