Scenario 1: Vaccination
Generate the Model and Dataset
Setup
using Catlab, Catlab.CategoricalAlgebra, Catlab.Programs, Catlab.WiringDiagrams, Catlab.Graphics
using AlgebraicPetri
using AlgebraicPetri.BilayerNetworks
using AlgebraicDynamics.UWDDynam
using LabelledArrays
using OrdinaryDiffEq, DelayDiffEq
using Plots
using ASKEM.Dec2022Demo: formSIRD, formInfType, augLabelledPetriNet, sirdAugStates, typeSIRD,
makeMultiAge, typeAge, typed_stratify, formVax, vaxAugStates, typeVax, writeMdlStrat,
loadSVIIvR, sviivrAugStates, typeSVIIvR
using ASKEM.SubACSets: mca
using ASKEM.Stratify: stratify_typed
types′ = LabelledPetriNet([:Pop],
:infect => ((:Pop, :Pop) => (:Pop, :Pop)),
:disease => (:Pop => :Pop),
:strata => (:Pop => :Pop),
:natural => (:Pop => :Pop),
)
types = map(types′, Name=name -> nothing)
# Parts of type system for ease of reference
s, = parts(types′, :S)
t_interact, t_disease, t_strata,t_natural = parts(types′, :T)
i_interact1, i_interact2, i_disease, i_strata, i_natural = parts(types′, :I)
o_interact1, o_interact2, o_disease, o_strata, o_natural = parts(types′, :O);
Original SEIRD model from the paper
seirdnat = LabelledPetriNet([:S, :E, :I, :R, :D],
:inf => ((:S, :I) => (:E, :I)),
:conv => (:E => :I),
:rec => (:I => :R),
:death => (:I => :D),
:nat_d_s => (:S => ()),
:nat_d_e => (:E => ()),
:nat_d_i => (:I => ()),
:nat_d_r => (:R => ()),
:nat_birth => (() => :S),
)
# seirdnat_aug = augLabelledPetriNet(seirdnat, [:S, :E, :I, :R])
seirdnat_typed = ACSetTransformation(seirdnat, types,
S=[s, s, s, s, s],
T=[t_interact, t_disease, t_disease, t_disease, t_disease, t_disease, t_disease, t_disease, t_natural],
I=[i_interact1, i_interact2, i_disease, i_disease, i_disease, i_disease, i_disease, i_disease, i_disease],
O=[o_interact1, o_interact2, o_disease, o_disease, o_disease, o_natural],
Name=name -> nothing
)
@assert is_natural(seirdnat_typed)
Model of vaccination process
vax_lpn = LabelledPetriNet([:U, :V],
:infuu => ((:U, :U) => (:U, :U)),
:infvu => ((:V, :U) => (:V, :U)),
:infuv => ((:U, :V) => (:U, :V)),
:infvv => ((:V, :V) => (:V, :V)),
:vax => (:U => :V),
)
Vax_aug_typed = ACSetTransformation(vax_lpn, types,
S=[s, s],
T=[t_interact, t_interact, t_interact, t_interact, t_strata],
I=[i_interact1, i_interact2, i_interact1, i_interact2, i_interact1, i_interact2, i_interact1, i_interact2, i_strata],
O=[o_interact1, o_interact2, o_interact1, o_interact2, o_interact1, o_interact2, o_interact1, o_interact2, o_strata],
Name=name -> nothing
)
@assert is_natural(Vax_aug_typed)
Original model stratified with vaccination
seirdnat_vax = stratify_typed(
seirdnat_typed=>[[:strata],[:strata],[:strata],[:strata],[]],
Vax_aug_typed=>[[:disease,:natural],[:disease,]],
types′)
conv: exposed => infected
Model 3.a.i for comparison
# SEIRDnat "stratified with vax"
function formSEIRDnatV()
SEIRDnatV = LabelledPetriNet([:Sv, :Ev, :Iv, :Rv, :D],
:inf => ((:Sv, :Iv) => (:Ev, :Iv)),
:conv => (:Ev => :Iv),
:rec => (:Iv => :Rv),
:death => (:Iv => :D),
:nat_d_s => (:Sv => ()),
:nat_d_e => (:Ev => ()),
:nat_d_i => (:Iv => ()),
:nat_d_r => (:Rv => ()),
)
return SEIRDnatV
end
seirdnat_v = formSEIRDnatV()
Model 3.a.ii for comparison
# CHIMESVIIvR
sviivr_lbn_pth = joinpath(@__DIR__, "CHIME_SVIIvR_dynamics_BiLayer.json")
sviivr_lbn = read_json_acset(LabelledBilayerNetwork, sviivr_lbn_pth)
sviivr = LabelledPetriNet()
migrate!(sviivr, sviivr_lbn)
Model Analysis
Question 3 Numerical Comparison
Compare simulation outputs between the three models, for the following two scenarios. Assume initial values and parameter values are consistent (to the extent possible) with Table 1 in https://biomedres.us/pdfs/BJSTR.MS.ID.007413.pdf. For initial values that are not specified, choose reasonable values and ensure they are the same between the three models being compared. i. Vaccine efficacy = 75%, population vaccinated = 10% ii. Vaccine efficacy = 75%, population vaccinated = 80%
E(0) = 99500 # exposed I(0) = 1 # infected recovered, deceased = 0 N = 10000000 mu = 0.012048 # death rate alpha = 0.00142 # fatality rate among unvaccinated alphav = 0.00142 # fatality rate among vaccinated betauu = 0.75 # probability of transmission per unvax contact * # of unvax contacts per time gamma^-1 = 3.31 # reciprocal of recovery rate of unvax gammav^-1 = 3.31 # " vax eps^-1 = 5.7 # reciprocal of rate of exposed,unvax => infectious,unvax epsv^-1 = 5.79 # " vax xi = 0.5 # vaccine efficacy kappa # fraction vaccinated
Run model 3ai
system = ODESystem(seirdnat_v) prob = ODEProblem(system, [10000000-99500, 99500, 1, 0, 0.0], [0, 100], [0.75, 1/5.7, 1/3.31, 0.012048, 1e-3, 1e-3, 1e-3, 1e-3])
Question 4
Create an equally weighted ensemble model using the three models in 3b, and replicate the scenarios in 3.c.i and 3.c.ii. How does the ensemble model output compare to the output from the individual component models?
Question 5
For any of the models in question 3, conduct a sensitivity analysis to determine which intervention parameters should be prioritized in the model, for having the greatest impact on deaths – NPIs, or vaccine-related interventions?
Question 6
With the age-stratified model, simulate the following situations. You may choose initial values that seem reasonable given the location and time, and you can reuse values from any of the publications referenced): i. High vaccination rate among older populations 65 years and older (e.g. 80%+), and low vaccination rate among all other age groups (e.g. below 15%) ii. High vaccination rate among all age groups iii. Repeat d.i and d.ii, but now add a social distancing policy at schools, that decreases contact rates by 20% for school-aged children only. iv. Compare and summarize simulation outputs for d.i-d.iii