Laplace's Equation
Now we consider Laplace's equation. What we produce in this section can also be accessed in FiniteVolumeMethod.LaplacesEquation
.
Mathematical Details
The mathematical details for this solver are the same as for our Poisson equation example, except with $f = 0$. The problems being solved are of the form
\[\div\left[D(\vb x)\grad u\right] = 0,\]
known as the generalised Laplace equation.[1]
Implementation
For the implementation, we can reuse a lot of what we had for Poisson's equation, except that we don't need create_rhs_b
.
using FiniteVolumeMethod, SparseArrays, DelaunayTriangulation, LinearSolve
const FVM = FiniteVolumeMethod
function laplaces_equation(mesh::FVMGeometry,
BCs::BoundaryConditions,
ICs::InternalConditions=InternalConditions();
diffusion_function=(x, y, p) -> 1.0,
diffusion_parameters=nothing)
conditions = Conditions(mesh, BCs, ICs)
n = DelaunayTriangulation.num_points(mesh.triangulation)
A = zeros(n, n)
b = zeros(DelaunayTriangulation.num_points(mesh.triangulation))
FVM.triangle_contributions!(A, mesh, conditions, diffusion_function, diffusion_parameters)
FVM.boundary_edge_contributions!(A, b, mesh, conditions, diffusion_function, diffusion_parameters)
FVM.apply_steady_dirichlet_conditions!(A, b, mesh, conditions)
FVM.fix_missing_vertices!(A, b, mesh)
Asp = sparse(A)
prob = LinearProblem(Asp, b)
return prob
end
laplaces_equation (generic function with 2 methods)
Now let's test this problem. We consider Laplace's equation on a sector of an annulus, so that[2]
\[\begin{equation*} \begin{aligned} \grad^2 u &= 1 < r > 2,\,0 < \theta < \pi/2, \\ u(x, 0) &= 0 & 1 < x < 2, \\ u(0, y) &= 0 & 1 < y < 2, \\ u(x, y) &= 2xy & r = 1, \\ u(x, y) &= \left(\frac{\pi}{2} - \arctan\frac{y}{x}\right)\arctan\frac{y}{x} & r = 2. \end{aligned} \end{equation*}\]
To start, we define our mesh. We need to define each part of the annulus separately, which takes some care.
using CairoMakie
lower_x = [1.0, 2.0]
lower_y = [0.0, 0.0]
θ = LinRange(0, π / 2, 100)
outer_arc_x = 2cos.(θ)
outer_arc_x[end] = 0.0 # must match with left_x
outer_arc_y = 2sin.(θ)
left_x = [0.0, 0.0]
left_y = [2.0, 1.0]
inner_arc_x = cos.(θ) |> reverse!
inner_arc_x[begin] = 0.0 # must match with left_x
inner_arc_y = sin.(θ) |> reverse!
boundary_x = [lower_x, outer_arc_x, left_x, inner_arc_x]
boundary_y = [lower_y, outer_arc_y, left_y, inner_arc_y]
boundary_nodes, points = convert_boundary_points_to_indices(boundary_x, boundary_y)
tri = triangulate(points; boundary_nodes)
refine!(tri; max_area=1e-3get_area(tri))
triplot(tri)
mesh = FVMGeometry(tri)
FVMGeometry with 1205 control volumes, 2172 triangles, and 3376 edges
The boundary conditions are defined as follows.
lower_f = (x, y, t, u, p) -> 0.0
outer_arc_f = (x, y, t, u, p) -> (π / 2 - atan(y, x)) * atan(y, x)
left_f = (x, y, t, u, p) -> 2x * y
inner_arc_f = (x, y, t, u, p) -> 2x * y
bc_f = (lower_f, outer_arc_f, left_f, inner_arc_f)
bc_types = (Dirichlet, Dirichlet, Dirichlet, Dirichlet)
BCs = BoundaryConditions(mesh, bc_f, bc_types)
BoundaryConditions with 4 boundary conditions with types (Dirichlet, Dirichlet, Dirichlet, Dirichlet)
Now we can define and solve the problem.
prob = laplaces_equation(mesh, BCs, diffusion_function=(x, y, p) -> 1.0)
LinearProblem. In-place: true
b: 1221-element Vector{Float64}:
0.0
0.0
0.024671493503386318
0.04883948713935658
0.0725039809079108
⋮
0.0
0.0
0.0
0.0
0.0
sol = solve(prob, KLUFactorization())
retcode: Default
u: 1221-element Vector{Float64}:
0.0
0.0
0.024671493503386318
0.04883948713935658
0.0725039809079108
⋮
0.5075511377246507
0.5286443315797773
0.19297076134216606
0.3804303776465873
0.58337371767503
fig = Figure(fontsize=33)
ax = Axis(fig[1, 1], xlabel="x", ylabel="y", width=600, height=600)
tricontourf!(ax, tri, sol.u, levels=0:0.1:1, colormap=:jet)
resize_to_layout!(fig)
fig
We can turn this type of problem into its corresponding SteadyFVMProblem
as follows:
initial_condition = zeros(DelaunayTriangulation.num_points(tri))
FVM.apply_dirichlet_conditions!(initial_condition, mesh, Conditions(mesh, BCs, InternalConditions())) # a good initial guess
fvm_prob = SteadyFVMProblem(FVMProblem(mesh, BCs;
diffusion_function=(x, y, t, u, p) -> 1.0,
initial_condition,
final_time=Inf))
SteadyFVMProblem with 1205 nodes
using SteadyStateDiffEq, OrdinaryDiffEq
fvm_sol = solve(fvm_prob, DynamicSS(TRBDF2()))
retcode: Success
u: 1221-element Vector{Float64}:
0.0
0.0
0.024671493503386318
0.04883948713935658
0.0725039809079108
⋮
0.5075511277350064
0.5286443198370117
0.1929707568765437
0.38043037171687266
0.5833737048859297
ax = Axis(fig[1, 2], xlabel="x", ylabel="y", width=600, height=600)
tricontourf!(ax, tri, fvm_sol.u, levels=0:0.1:1, colormap=:jet)
resize_to_layout!(fig)
fig
Using the Provided Template
Let's now use the built-in LaplacesEquation
which implements the above inside FiniteVolumeMethod.jl. We consider the problem[3]
\[\begin{equation*} \begin{aligned} \div\left[D(\vb x)\grad u\right] &= 0,\,0 < x < 5,\, 0 < y < 5, \\ u(0, y) &= 0 & 0 < y < 5, \\ u(5, y) &= 5 & 0 < y < 5, \\ \grad u \vdot \vu n &= 0 & 0 < x < 5,\, y \in \{0, 5\}, \end{aligned} \end{equation*}\]
where $D(\vb x) = (x+1)(y+2)$. The exact solution is $u(x, y) = 5\log_6(1+x)$. We define this problem as follows.
tri = triangulate_rectangle(0, 5, 0, 5, 100, 100, single_boundary=false)
mesh = FVMGeometry(tri)
zero_f = (x, y, t, u, p) -> 0.0
five_f = (x, y, t, u, p) -> 5.0
bc_f = (zero_f, five_f, zero_f, zero_f)
bc_types = (Neumann, Dirichlet, Neumann, Dirichlet) # bottom, right, top, left
BCs = BoundaryConditions(mesh, bc_f, bc_types)
diffusion_function = (x, y, p) -> (x + 1) * (y + 2)
prob = LaplacesEquation(mesh, BCs; diffusion_function)
LaplacesEquation with 10000 nodes
sol = solve(prob, KLUFactorization())
retcode: Default
u: 10000-element Vector{Float64}:
0.0
0.13752412788341495
0.2685706875257478
0.39373122838568536
0.5135147693274518
⋮
4.904416090048676
4.928620646536578
4.952617114107141
4.976409061067356
5.0
fig = Figure(fontsize=33)
ax = Axis(fig[1, 1], xlabel="x", ylabel="y",
width=600, height=600,
title="Numerical", titlealign=:left)
tricontourf!(ax, tri, sol.u, levels=0:0.25:5, colormap=:jet)
ax = Axis(fig[1, 2], xlabel="x", ylabel="y",
width=600, height=600,
title="Exact", titlealign=:left)
u_exact = [5log(1 + x) / log(6) for (x, y) in DelaunayTriangulation.each_point(tri)]
tricontourf!(ax, tri, u_exact, levels=0:0.25:5, colormap=:jet)
resize_to_layout!(fig)
fig
To finish, here is a benchmark comparing this problem to the corresponding SteadyFVMProblem
.
initial_condition = zeros(DelaunayTriangulation.num_points(tri))
FVM.apply_dirichlet_conditions!(initial_condition, mesh, Conditions(mesh, BCs, InternalConditions())) # a good initial guess
fvm_prob = SteadyFVMProblem(FVMProblem(mesh, BCs;
diffusion_function=(x, y, t, u, p) -> (x + 1) * (y + 2),
final_time=Inf,
initial_condition))
SteadyFVMProblem with 10000 nodes
using BenchmarkTools
@btime solve($prob, $KLUFactorization());
15.368 ms (56 allocations: 17.12 MiB)
@btime solve($fvm_prob, $DynamicSS(TRBDF2(linsolve=KLUFactorization())));
495.417 ms (223001 allocations: 114.30 MiB)
Just the code
An uncommented version of this example is given below. You can view the source code for this file here.
using FiniteVolumeMethod, SparseArrays, DelaunayTriangulation, LinearSolve
const FVM = FiniteVolumeMethod
function laplaces_equation(mesh::FVMGeometry,
BCs::BoundaryConditions,
ICs::InternalConditions=InternalConditions();
diffusion_function=(x, y, p) -> 1.0,
diffusion_parameters=nothing)
conditions = Conditions(mesh, BCs, ICs)
n = DelaunayTriangulation.num_points(mesh.triangulation)
A = zeros(n, n)
b = zeros(DelaunayTriangulation.num_points(mesh.triangulation))
FVM.triangle_contributions!(A, mesh, conditions, diffusion_function, diffusion_parameters)
FVM.boundary_edge_contributions!(A, b, mesh, conditions, diffusion_function, diffusion_parameters)
FVM.apply_steady_dirichlet_conditions!(A, b, mesh, conditions)
FVM.fix_missing_vertices!(A, b, mesh)
Asp = sparse(A)
prob = LinearProblem(Asp, b)
return prob
end
using CairoMakie
lower_x = [1.0, 2.0]
lower_y = [0.0, 0.0]
θ = LinRange(0, π / 2, 100)
outer_arc_x = 2cos.(θ)
outer_arc_x[end] = 0.0 # must match with left_x
outer_arc_y = 2sin.(θ)
left_x = [0.0, 0.0]
left_y = [2.0, 1.0]
inner_arc_x = cos.(θ) |> reverse!
inner_arc_x[begin] = 0.0 # must match with left_x
inner_arc_y = sin.(θ) |> reverse!
boundary_x = [lower_x, outer_arc_x, left_x, inner_arc_x]
boundary_y = [lower_y, outer_arc_y, left_y, inner_arc_y]
boundary_nodes, points = convert_boundary_points_to_indices(boundary_x, boundary_y)
tri = triangulate(points; boundary_nodes)
refine!(tri; max_area=1e-3get_area(tri))
triplot(tri)
mesh = FVMGeometry(tri)
lower_f = (x, y, t, u, p) -> 0.0
outer_arc_f = (x, y, t, u, p) -> (π / 2 - atan(y, x)) * atan(y, x)
left_f = (x, y, t, u, p) -> 2x * y
inner_arc_f = (x, y, t, u, p) -> 2x * y
bc_f = (lower_f, outer_arc_f, left_f, inner_arc_f)
bc_types = (Dirichlet, Dirichlet, Dirichlet, Dirichlet)
BCs = BoundaryConditions(mesh, bc_f, bc_types)
prob = laplaces_equation(mesh, BCs, diffusion_function=(x, y, p) -> 1.0)
sol = solve(prob, KLUFactorization())
fig = Figure(fontsize=33)
ax = Axis(fig[1, 1], xlabel="x", ylabel="y", width=600, height=600)
tricontourf!(ax, tri, sol.u, levels=0:0.1:1, colormap=:jet)
resize_to_layout!(fig)
fig
initial_condition = zeros(DelaunayTriangulation.num_points(tri))
FVM.apply_dirichlet_conditions!(initial_condition, mesh, Conditions(mesh, BCs, InternalConditions())) # a good initial guess
fvm_prob = SteadyFVMProblem(FVMProblem(mesh, BCs;
diffusion_function=(x, y, t, u, p) -> 1.0,
initial_condition,
final_time=Inf))
using SteadyStateDiffEq, OrdinaryDiffEq
fvm_sol = solve(fvm_prob, DynamicSS(TRBDF2()))
ax = Axis(fig[1, 2], xlabel="x", ylabel="y", width=600, height=600)
tricontourf!(ax, tri, fvm_sol.u, levels=0:0.1:1, colormap=:jet)
resize_to_layout!(fig)
fig
tri = triangulate_rectangle(0, 5, 0, 5, 100, 100, single_boundary=false)
mesh = FVMGeometry(tri)
zero_f = (x, y, t, u, p) -> 0.0
five_f = (x, y, t, u, p) -> 5.0
bc_f = (zero_f, five_f, zero_f, zero_f)
bc_types = (Neumann, Dirichlet, Neumann, Dirichlet) # bottom, right, top, left
BCs = BoundaryConditions(mesh, bc_f, bc_types)
diffusion_function = (x, y, p) -> (x + 1) * (y + 2)
prob = LaplacesEquation(mesh, BCs; diffusion_function)
sol = solve(prob, KLUFactorization())
fig = Figure(fontsize=33)
ax = Axis(fig[1, 1], xlabel="x", ylabel="y",
width=600, height=600,
title="Numerical", titlealign=:left)
tricontourf!(ax, tri, sol.u, levels=0:0.25:5, colormap=:jet)
ax = Axis(fig[1, 2], xlabel="x", ylabel="y",
width=600, height=600,
title="Exact", titlealign=:left)
u_exact = [5log(1 + x) / log(6) for (x, y) in DelaunayTriangulation.each_point(tri)]
tricontourf!(ax, tri, u_exact, levels=0:0.25:5, colormap=:jet)
resize_to_layout!(fig)
fig
initial_condition = zeros(DelaunayTriangulation.num_points(tri))
FVM.apply_dirichlet_conditions!(initial_condition, mesh, Conditions(mesh, BCs, InternalConditions())) # a good initial guess
fvm_prob = SteadyFVMProblem(FVMProblem(mesh, BCs;
diffusion_function=(x, y, t, u, p) -> (x + 1) * (y + 2),
final_time=Inf,
initial_condition))
This page was generated using Literate.jl.
- 1See, for example, this paper by Rangogni and Occhi (1987).
- 2This problem comes from here.
- 3This is the first example from this paper by Rangogni and Occhi (1987).