Developer documentation

Synchronizers API

A key part of operator splitting algorithms in the synchronization logic. Parameters of one subproblem might need to be kept in sync with the solution of other subproblems and vice versa. To handle this efficiently OrdinaryDiffEqOperatorSplitting.jl provides a small set of utils.

OrdinaryDiffEqOperatorSplitting.forward_sync_subintegrator!Function
 forward_sync_subintegrator!(outer_integrator::OperatorSplittingIntegrator, inner_integrator::DiffEqBase.DEIntegrator, solution_indices, sync)

This function is responsible of copying the solution and parameters of the outer integrator and the synchronized subintegrators with the information given into the inner integrator. If the inner integrator is synchronized with other inner integrators using sync, the function forward_sync_external! shall be dispatched for sync. The sync object is passed from the outside and is the main entry point to dispatch custom types on for parameter synchronization. The solution_indices are global indices in the outer integrators solution vectors.

source
OrdinaryDiffEqOperatorSplitting.backward_sync_subintegrator!Function
backward_sync_subintegrator!(outer_integrator::OperatorSplittingIntegrator, inner_integrator::DiffEqBase.DEIntegrator, solution_indices, sync)

This function is responsible of copying the solution of the inner integrator back into outer integrator and the synchronized subintegrators. If the inner integrator is synchronized with other inner integrators using sync, the function backward_sync_external! shall be dispatched for sync. The sync object is passed from the outside and is the main entry point to dispatch custom types on for parameter synchronization. The solution_indices are global indices in the outer integrators solution vectors.

source
OrdinaryDiffEqOperatorSplitting.need_syncFunction
need_sync(a, b)

This function determines whether it is necessary to synchronize two objects with any solution information. A possible reason when no syncronization is necessary might be that the vectors alias each other in memory.

source

Adding Synchronizers

Warning

The API is not stable yet and subject to breaking changes.

You need to provide dispatches for

OrdinaryDiffEqOperatorSplitting.forward_sync_subintegrator!Function
 forward_sync_subintegrator!(outer_integrator::OperatorSplittingIntegrator, inner_integrator::DiffEqBase.DEIntegrator, solution_indices, sync)

This function is responsible of copying the solution and parameters of the outer integrator and the synchronized subintegrators with the information given into the inner integrator. If the inner integrator is synchronized with other inner integrators using sync, the function forward_sync_external! shall be dispatched for sync. The sync object is passed from the outside and is the main entry point to dispatch custom types on for parameter synchronization. The solution_indices are global indices in the outer integrators solution vectors.

source
OrdinaryDiffEqOperatorSplitting.backward_sync_subintegrator!Function
backward_sync_subintegrator!(outer_integrator::OperatorSplittingIntegrator, inner_integrator::DiffEqBase.DEIntegrator, solution_indices, sync)

This function is responsible of copying the solution of the inner integrator back into outer integrator and the synchronized subintegrators. If the inner integrator is synchronized with other inner integrators using sync, the function backward_sync_external! shall be dispatched for sync. The sync object is passed from the outside and is the main entry point to dispatch custom types on for parameter synchronization. The solution_indices are global indices in the outer integrators solution vectors.

source

with your custom synchronizer object and add it to the split function construction as follows:

f1, f2            = generate_individual_functions() # assuming 3 unknowns each
i1, i2            = generate_solution_indices()     # e.g. ([1,2,3], Int[])
synchronizer_tree = generate_my_synchronizer_tree() # e.g. (MySyncronizer([1,2,3]), NoExternalSynchronization())
f                 = GenericSplitFunction((f1,f2), (i1,i2), synchronizer_tree)
u0                = [-1.0, 1.0, 0.0]
tspan             = (0.0, 1.0)
prob              = OperatorSplittingProblem(f, u0, tspan)

Adding Solvers

Warning

The API is not stable yet and subject to breaking changes.

To add a new solver just define two new structs, one for the algorithm description and one for the algorithm cache and dispatch internal functions, as follows:

using SciMLBase, OrdinaryDiffEqOperatorSplitting
struct MySimpleFirstOrderAlgorithm{InnerAlgorithmTypes} <: OrdinaryDiffEqOperatorSplitting.AbstractOperatorSplittingAlgorithm
    inner_algs::InnerAlgorithmTypes # Tuple of solver for the problem sequence
end

struct MySimpleFirstOrderCache{uType, uprevType, iiType} <: OrdinaryDiffEqOperatorSplitting.AbstractOperatorSplittingCache
    u::uType
    uprev::uprevType
    inner_caches::iiType
end

function OrdinaryDiffEqOperatorSplitting.init_cache(f::GenericSplitFunction, alg::MySimpleFirstOrderAlgorithm;
    uprev::AbstractArray, u::AbstractVector,
    inner_caches,
    alias_uprev = true,
    alias_u     = false,
)
    @assert length(inner_caches) == 2
    _uprev = alias_uprev ? uprev : SciMLBase.recursivecopy(uprev)
    _u     = alias_u     ? u     : SciMLBase.recursivecopy(u)
    return MySimpleFirstOrderAlgorithmCache(_u, _uprev, inner_caches)
end

@inline function OrdinaryDiffEqOperatorSplitting.advance_solution_to!(outer_integrator::OperatorSplittingIntegrator, subintegrators::Tuple, solution_indices::Tuple, synchronizers::Tuple, cache::MySimpleFirstOrderAlgorithmCache, tnext)
    # We assume that the integrators are already synced
    @unpack inner_caches = cache

    # Advance first subproblem
    OrdinaryDiffEqOperatorSplitting.forward_sync_subintegrator!(outer_integrator, subintegrators[1], solution_indices[1], synchronizers[1])
    OrdinaryDiffEqOperatorSplitting.advance_solution_to!(outer_integrator, subintegrators[1], solution_indices[1], synchronizers[1], inner_caches[1], tnext)
    if subintegrators[1].sol.retcode ∉ (SciMLBase.ReturnCode.Default, SciMLBase.ReturnCode.Success)
        return
    end
    OrdinaryDiffEqOperatorSplitting.backward_sync_subintegrator!(outer_integrator, subintegrators[1], solution_indices[1], synchronizers[1])

    # Advance second subproblem
    OrdinaryDiffEqOperatorSplitting.forward_sync_subintegrator!(outer_integrator, subintegrators[2], solution_indices[2], synchronizers[2])
    OrdinaryDiffEqOperatorSplitting.advance_solution_to!(outer_integrator, subintegrators[2], solution_indices[2], synchronizers[2], inner_caches[2], tnext)
    if subintegrators[2].sol.retcode ∉ (SciMLBase.ReturnCode.Default, SciMLBase.ReturnCode.Success)
        return
    end
    OrdinaryDiffEqOperatorSplitting.backward_sync_subintegrator!(outer_integrator, subintegrators[2], solution_indices[2], synchronizers[2])

    # Done :)
end